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An acoustic Casimir effect†

Andrés Larraza and Bruce Denardo

Department of Physics, Naval Postgraduate School, Monterey, CA  93943

Theoretical and experimental results are presented for the force law between two

rigid, parallel plates due to the radiation pressure of band−limited acoustic noise.

Excellent agreement is shown between theory and experiment.  While these

results constitute an acoustic analog for the Casimir effect, an important

difference is that band-limited noise can cause the force to be attractive or

repulsive as a function of the distance of separation of the plates.  Applications

of the acoustic Casimir effect to background noise transduction and non-

resonant acoustic levitation are suggested.
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In the Casimir effect [1], two closely spaced uncharged parallel conducting

plates mutually attract because their presence changes the mode structure of

the quantum electromagnetic zero point field (ZPF) relative to free space.  If the

plates are a distance d apart, the force per unit area is f =  π2
�c/240 d4, where � is

the reduced Planck’s constant and c is the speed of light in vacuum.  The force

can be calculated from the difference between the vacuum electromagnetic

energy for infinite plate separation distance and a finite plate separation distance

[1].  Lamoreaux [2] has recently provided conclusive experimental verification of

the Casimir force.

The attraction between the two parallel plates can be understood in terms

of the radiation pressure exerted by the plane waves that comprise the

homogeneous, isotropic ZPF spectrum.  In the space between the conducting

plates, the modes formed by reflections off the plates act to push the plates

apart.  The modes outside the cavity formed by the plates act to push the plates

together.  The difference between the total outward pressure and the total inward

pressure is the Casimir force per unit area. [3]  Because the energy per mode of

the zero point field has the same value ½�ω between and outside the plates, one

may incorrectly be led to attribute the attractive character of the force as due to

the fact that there are fewer modes between the plates.  Surprisingly, as we

show below, the force can be repulsive for band-limited noise.

Because the ZPF can be thought of as broadband noise of an infinite

spectrum, it should be possible to use an acoustic broadband noise spectrum as

an analog to at least some ZPF effects.  An acoustic spectrum has several

advantages.  Because the speed of sound is six orders of magnitude less than

the speed of light, the length and time scales are more manageable and

measurable.  Also, in an acoustic field, the shape of the spectrum as well as the

field intensity can be controlled.  In this letter, we report theory and
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measurements of the force between two rigid parallel plates in an externally-

generated band-limited noise field. [4]

A simple calculation shows that for the same separation distance, the

Casimir force due to the electromagnetic zero point is at least six orders of

magnitude greater than the Casimir force due to zero point phonons, because

the speed of light is six orders of magnitude greater than the speed of sound and

because the phonon spectrum has a natural high frequency cutoff at the Debye

temperature.  To be distinguished from the effects of the zero point field, a

Casimir-like effect due to thermal phonons and photons would require separation

distances d > hc/2kT which would make the force extremely difficult to measure.

Driven electromagnetic white noise (composed of real photons) would yield

forces much smaller than acoustically driven noise.  Thus, the best choice for a

Casimir analog is acoustically driven noise.  The forces we measure in this case

are the equivalent of 30 mg while the forces Lamoreaux measured due to actual

Casimir effect are equivalent to 10 micrograms.

One of the key ideas in the derivation of the ZPF Casimir force is the fact

that the energy per mode ½�ω is the same for modes both outside and between

the plates, which can be understood with the adiabatic theorem.  To this

purpose, imagine that the plates are initially far apart so that the spectral

intensity of the ZPF is that of free space.  If we now adiabatically move the walls

towards each other, the modes comprising the ZPF will remain in their ground

state; only their frequencies will be shifted in such a way that the ratio of the

energy per mode E to the frequency ω remains constant, or E/ω = �/2.  Thus, the

main effect of the boundaries is to redistribute ground state modes of which

there is an infinite number.

In the acoustic Casimir effect, in contrast to the ZPF Casimir effect,

broadband acoustic noise outside two parallel rigid plates drives the discrete
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modes between the plates.  The adiabatic theorem does not apply in this case

both because of inherent losses in the system and because the spectrum can be

arbitrary.  In general, when the response and drive amplitudes are expressed in

the same units, the response is approximately the quality factor Q multiplied by

the drive (“Q amplification”).  The energy per mode being the same in the ZPF

Casimir effect therefore implies that the space between the plates cannot be

considered as a resonant cavity unless the quality factor of each mode is unity.

While external drivers can provide a steady state noise spectrum from which we

can infer the energy per mode by dividing by the density of states ω2/2π2c3, this

energy may be different in the cavity formed by the plates as a result of Q

amplification.  However, for this open resonant cavity the quality factor is poor,

so we may assume it to be equal to unity, which renders the energy per mode

equal to its value in free space.

In general, the radiation pressure of a wave incident at angle θ on a rigid

plate is

θ= 2cos
c
2P I  , (1)

where I is the average intensity of the incident wave and c is the wave speed.

The factor of two is due to perfect reflectivity assumed for the plate.  Eq. (1)

follows from the time-averaged second-order acoustic pressure, which equals

the time-averaged potential energy density minus the time-averaged kinetic

energy density. [5]  When the acoustic case is constrained to one dimension,

mass conservation yields an explicit dependence of the radiation pressure on the

elasticity of the medium characterized by γ, the ratio of specific heats, namely P

= (1+γ)I/c. [6]  However, for the three-dimensional open geometry in our case,
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the constraint due to mass conservation does not apply and the acoustic and

electromagnetic expressions for the radiation pressure at a perfectly reflecting

surface are identical. [7]

With appropriate filters, one may shape the spectrum of an acoustic driver

and obtain, in principle, different force laws.  For an isotropic noise spectrum with

spectral intensity Iω, (measured by a microphone) the spectral intensity in the

wavevector space of traveling waves is Ik = cIω/4πk2, where the wavevector k has

magnitude k = ω/c.  We choose the z axis to be normal to the plate, so that kz = k

cosθ.  From Eq. (1), the total radiation pressure due to waves that strike the plate

is then

� θ= 2
kzyxout cosdkdkdk

c
2P I  , (2)

where the integration is over k values corresponding to waves that strike the

plate.

Regarding the discrete modes between the plates, for convenience we

continue to deal with the traveling wave modes.  We label these modes with

wavevector components kx = nxπ/Lx, ky = nyπ/Ly, and kz = nzπ/Lz, where nx, ny, and

nz are signed integers and Lx, Ly, and Lz are the dimensions between the plates.

As before, the z axis is chosen to be normal to the plates.  As a result of the

quality factor of the modes being approximately unity, the intensity Iin(k) of each

mode between the plates is expected to be approximately the same as the

outside broadband intensity in a bandwidth equal to the wavevector spacing of

the inside modes:  Iin(k) = Ik∆kx∆ky∆kz, where ∆ki = π/Li.  In the limit of large

dimensions, this expression for the inside intensity yields the correct wavevector

spectral intensity Ik.
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We assume that the dimensions Lx and Ly of the plates are sufficiently

large that the corresponding components of the wavevectors are essentially

continuous.  Thus, in comparison to Eq. (2), the total inside pressure is

��∆= 2

2
z

yxzin k
kdkdkk

c
2P kI  , (3)

where ∆kz = π/Lz and the sum is over values of nz > 0.

The difference Pin−Pout is the force f per unit area between the plates,

which is a continuous and piecewise differentiable function of the separation

distance between the plates.  It can be shown (see below) that the force can

alternate between negative (attractive force) and positive (repulsive force) values

as the plate separation distance or the band-limiting frequencies are varied.  On

the other hand, if the lower frequency in the band is zero, the force is always

attractive.

In an experiment dealing with an acoustic analog to the Casimir effect, an

important question is whether other nonzero time-averaged (dc) effects can play

an important role.  The only second order dc effects in acoustics are radiation

pressure and streaming.  Any other dc effect would be fourth order in the

acoustic pressure, and at least 40 dB smaller in our case.  Employing smoke in

the apparatus described below, we detected no acoustic streaming when driving

with broadband acoustic noise at the intensity level used in the experiment.

Because the noise in our experiment can be thought as collection of

monochromatic waves over a band of frequencies with randomly varying phases,

we would expect very little or no streaming when the characteristic time of phase

variations is less that the diffusion time.  Furthermore, because acoustic

streaming is driven along the boundary from a pressure antinode to a pressure
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node, in the presence of broadband noise the pressure nodes and antinodes of

the different noise components are densely distributed along the boundary, thus

reducing or eliminating the streaming.

Two 15.00 cm diameter plates were used for the acoustic Casimir force

measurement (Fig. 1).  The bottom plate is 6.35 mm (1/4 inch) thick aluminum,

attached to the top of a step motor mount.  The top plate is 5.57 mm (7/32 inch)

thick PVC which was vacuum-aluminized and hung beneath the analytical

balance by an aluminum bar screwed into the plate and attached to the balance

by a hook (Fig. 1).  The weight of the top plate, 168.1653 g, is well within the 200

g maximum capacity of the balance, whose resolution is of 0.01 mg.  Both plates

were grounded to a common ground to eliminate electrostatic effects, thereby

minimizing fluctuations in the force measurements.  The acoustical chamber was

made from a 1/4 in. thick steel propane tank.  The amplified band-limited output

of an analog noise source drives six compression drivers that provide the desired

acoustic noise intensity within the acoustic chamber.  The acoustic noise is

nearly homogeneous and isotropic.

The step motor was mounted on a small aluminum optical bench with

three-point leg adjustments, centered in the acoustic chamber 46 cm from the

tank access.  The number of steps (1 to 255 steps) and direction (up or down)

are varied with a microchip controller.  Attached to a machined screw with 20

threads/inch, the step motor mount yields a displacement ranging from 6.35 µm

for one step (1.8 degrees) to 1.27 mm for 200 steps (360 degrees).  We

employed plate spacing increments of 1.27 mm through the full 6.3 cm range of

the step motor mount.

The initial plate spacing was determined with a spark plug gap gauge and

the plate separation distance was verified to be uniform by measurements at

different locations between the plates.  Once the balance reading locked in on
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the weight of the top plate, the balance was tared to zero and all force

measurements were made relative to this zero.  The acoustic noise field was

turned on for each plate separation distance and the force measurement

recorded once the balance readout first locked-in.  The sound field was then

turned off and the reading of the balance was verified to return to zero.

We selected a uniform broadband noise spectrum between roughly 5 and

15 kHz.  The lower limit was selected well above the lower modes of the tank in

order to excite a noise distribution as homogeneous as possible.  The upper limit

was due to the compression drivers rolling off 20 dB from 15 to 20 kHz.  Figure 2

shows the measured noise spectrum which, except for 5 dB variations

throughout, is nearly flat within the spectral range of 4.8 to 16 kHz.  The total

intensity is 133 dB (re 10−12 W/m2).

Using a spark plug gauge, we measured the initial plate separation

distance to be 0.76 mm.  As shown in Fig. 3, throughout a range of distances

less than the smallest half wavelength (no modes between the plates), the

measured force is approximately independent of distance, and agrees with the

expected value for an intensity level of 133 dB.  When the half wavelength of the

highest frequency fits between the plates (10.63 mm for 16 kHz), the force

begins to decrease non-monotonically, and becomes repulsive (i.e., negative) at

30 − 40 mm.  Based on the experimental spectral range of 4.8 to 16 kHz for the

theory, with a total intensity of 133 dB, the curves are from the theory (2) and (3)

with no adjustable parameters for a flat spectrum (solid curve) and a piecewise

power−law spectrum that approximates the experimental spectrum.

The repulsive force can be understood as follows.  When the distance

between the plates is comparable to the half wavelength associated with the

lower edge of the frequency band, the corresponding modes inside the plates

have wavevectors that are nearly perpendicular to the plates.  However, the
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modes outside the plates corresponding to the same frequencies are spread

over all possible angles of incidence.  Thus for the same total intensity, the

momentum transfer due to waves inside the plates is over a narrow cone while

the momentum transfer due to waves outside the plates extends over all angles,

leading to a repulsive force.

Experimental evidence of attractive and repulsive forces within a finite

acoustic bandwidth suggests new means of acoustic levitation.  The force

between two objects can be manipulated by changing the distance between the

objects and/or varying the spectrum.  While the Casimir force is small compared

to the force of the Earth’s gravity, in a low gravity environment a method of

material control through the manipulation of an acoustic noise spectrum or plate

geometry may be possible.  The acoustic Casimir effect can also be a potential

tool in noise transduction because a direct measurement of the force can

determine the total intensity of background noise.  The shape of the force over

distance is effectively an instantaneous time average over all frequencies and

may provide an alternative to measurements of background noise.

_____________________________
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FIGURE CAPTIONS

Figure 1 Apparatus to measure the force between two rigid parallel plates

due to the radiation pressure of broadband acoustic noise.  The tank is made of

0.64 cm steel, and has length 1.5 m and diameter 0.5 m.  One end is ellipsoidal

while the other is flat with a steel faceplate to which is mounted a 5 cm thick,

61.5 cm square acrylic access cover secured by four C-clamps.  A sliding 5 cm

thick acrylic bar allows the positioning of the balance at a desired location, and

also serves for spectral measurements of the noise along the tank.  A

microphone was positioned within 1 cm of the top plate to provide spectrum

intensity measurements.

Figure 2 Experimental spectrum in a band of frequencies between 4.8 − 16

kHz.  The spectrum is relatively flat and exhibits structure (dip) and an overall 5

dB roll off.  The total intensity of the noise is 133 dB (re 10−12 W/m2).

Figure 3 Force between two parallel rigid plates as a function of the distance

between them.  The points are experimental data, and the curves are form

theory (2) and (3)  with no adjustable parameters for a flat spectrum (solid curve)

and a piecewise power−law spectrum that approximates the experimental

spectrum (dashed curve).
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FIGURE 2
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FIGURE 3
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